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ON THE FREE EXPANSION OF TWO-DIMENSIONAL STREAMS OF PERFECT GAS* 

A. N. KRAIKO and V. V. SHELOMOVSKII 

The laws of free expansion of plane and axisymmetric streams of perfect gas are in- 
vestigated using the model of continuous medium under conditions of discharge into 
vacuum, at the initial sections of streams flowing into a region of low but finite 
pressure, and also in the nozzle accelerating section. 

It is shown that when the adiabatic exponent x does not exceed 2 and 3/2 in the plane 
and axisymmetric case, respectively, the conclusion reached by Ladyzhenskii /l-6/ on the 
rectilinearity of streamlines in an "ideal field" of the stream, and the formulas in /l-66/ 
for the flow parameters need more precise definition. In the plane case such refinement, us- 
ing hodograph variables, made it possible to obtain expressions for the stream parameters 
that ensure good precision not only at high but, also, at moderate Mach numbers. By increas- 
ing the number of terms of these expressions or extending the initial region of the "near 
field" in numerical calculations (coefficients of these expressions are obtained using the 
conditions of merging within and at the boundary of that region), it is possible to infinitely 
increase the exactness of formulas that are valid at, as far as desired, distances from the 
initial stream cross section. Similar formulas are obtained also for the axisymmetric case, 
although the analysis here is not so rigorous, since the passing to the hodograph plane is 
preceded by the simplification of the continuity equation which is valid only near the axis of 
symmetry. The regularity of derived formulas for the plane, as well as for the axisymmetric 
case was confirmed by comparing the laws that follow from them with similar laws based on ex- 
tensive numerical calculations effected by the method of characteristics. 

1. Let us consider an axisymmetric or plane stream of perfect (inviscid and non-heat- 
conducting) gas, freely flowing from a convergent or convergent-divergent nozzle. We direct 
the 5 -axis of a Cartesian (ryz) or cylindrical (sycp) coordinate system downstream (fromleft 
to right) and locate the plane 5 = 0 at the minimum (or, if specifically stated, at the out- 
let) nozzle cross section. In the plane case we shall consider only nozzles that have a plane 
of symmetry, although this restriction is, in fact, not essential. We identify that plane 
with the z-plane and, as in the axisymmetric case, consider only values y >O. By defini- 
tion, the parameters of the investigated flows depend only on I and y, but the velocity 
vector q may have all its three components ZL.L: and w nonzero. Below, free expansion is to 
be understood as the flow into vacuum that obtains either at the wall discontinuity at point 
a when the magnitude of the latter exceeds some limit value, or along a wall whose angle of 
inclination to the r-axis continuously increases with x>x,== 0 thus ensuring the expansion 
of gas to zero pressure. Both possibilities are shown in Fig.1 in which the nozzle wall is 
shaded and the dot line represents the sonic line. Figure l,a corresponds to a break in the 
wall and l,b to a wall formed by an arc of radius r.. When r= 0 the second case reduces 
to the first. 

The "parabolic degeneration" to which attention was evidently first drawn by Ladyzhenskii 

/l/, is an important property of free expansion flows. This property consists of the follow- 
ing. The considered flow is defined, in addition to streamlines along which the totalenthalpy, 

a X b 5 

. 
Fig.1 

entropy, and "circulation" I'=y% with v = 0 and 1, respectively, in the plane and axisym- 
metric cases, and with supersonic "meriodional" component V of vector q has two sets of real 
characteristics (L'+ and c-characteristics or characteristics of the first and second set), 
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along which (1.1) 

where the upper (lower) signs correspond to c+(c-)characteristics, 6 is the angle of inclina- 
tion of V to the z-axis, V = 1 VI =1/u" + 9. The Machangle a is determined by the meridion- 
al Mach number M= V/a , where a is the speed of sound, p is the density and p the 

pressure. In (1.1) and below all variables are dimensionless quantities, with those of dim- 

ension length normalized with respect to y; of the ordinate of the wall at minimum cross 

section, and those of dimensions of velocity, density, and pressure normalized with respect 

to ap. PB and PP%"* where a$ and p+" are some constants of dimension velocity and 

density. In calculations of isoenergetic and isentropic flows the critical velocity and 

density were taken for a,O and pp. 

In the case of free expansion at the corner or along the wall (when r>O) angle 6 con- 

tinuously increases,while a decreases and approaches zero. Hence thereexists a characterist- 

ic c-whose angle of inclination to the wall is so small that it intersects streamlines and 

reaches the x-axis only when Z-CD. The next following characteristics c;do not, gen- 
erally, reach the z-axis. The investigation presented below shows that the described situa- 

tion actually obtains, if X is not very close to unity. Let X0,2,,... be segments of iso- 

bars between the wall and the z-axis, whose initial points coincide with the initial points 
of the indicated characteristics. In Fig.1 z,, x,, . . . are denoted by dash lines and the c-- 

characteristics by thin continuous lines. By virtue of the above the region of definiteness 
of Qi of each segment Xi stretches along the z-axis, and for Z,,... also along y to 

infinity, with the parameters in sli determined by the condition of symmetry 6 = 0 at y = 0 
and the input data on Xi. The similarity of the described situation with that occuringwith 

parabolic type equations explains the term "parabolic degeneration". 

The absence of any conditions at the upper bounds of @ substantially simplifies the 

derivation of solution, and this will be utilized below. Before proceeding any further, we 

shall present the results of calculations related to our problem, particularly as regards iso- 

energetic isentropic and irrotational (we.0) streams at 6~0 and . MzM,=f in the z=o 

Fig.2 

cross section. whenv=O,r=O theninconformitywith (l.l),the dependence established by the 

e--characteristics connecting the respective points of the r-axis with those of the charact- 

eristics in the beam at a, between the Mach number M at the stream axis and angle 6 in the 

beam, is of the form 
o(l) 

6 = e (M-, M,) = f p (34) - CD (MO)], 
. ‘.-I 

ul (M) = 1 CPWP. wb=y (1.2) 

P(M) 
where the dependence of C+I on p and of p on M is derived from the conditions that the 
stream must be isoenergetic and isentropic, with allowance for the gas equations of state. 
For a perfect gas Q(M) is defined in terms of elementary functions by the formula 

*(M) = ,-'I2 mtg )ls(M'- 1) - arc& VW- 1 = JI (C'l - (1.3) 

‘1)/2--i/I(%-i)+o(M~. s=(x-ij!(X+ij 

When M,= i the first term of the expansion of @(Mj yields at the break point 28 for 

the c--characteristic which reaches the z-axisas t-m. The curves calculated by (1.2) 

and (1.3) for various x and M,= 1.002 are shown in Fig.2,a by solid lines (figures at these 
curves indicate the value of x). Similar curves obtained for the same M0 but for T and Y 

not simultaneously zero , using numerical integration of (1.1) by the method of characteristics 

are shown in Fig.2,a by dash lines (v=O,r=S) and in Fig.2,b (v=l by solid lines for r=O 

and for r= 5 by dash lines). The method of characteristics was, obviously, used for computa- 

tions up to finite Mach numbers (from 30 to 50 depending on xj. The respective curves for 
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M>i according to obtained results proved to be virtually linearly dependent on M-’ also 
when v=r=O. This makes it possible to continue these up to M-l=0 , i.e. to M=cc 
and thus determine 8 (30, 1.002) . Note that in all examples calculated for fixed M>l,x,r and 
MO31 in the axisymmetric case 0 is very close to half of the magnitude obtained for v=O. 

Below, we consider only isoenergetic and isentropic supersonic flows with w=O , for 
which all thermodynamic variables are functions of V only, and V and 6 satisfy to quasi- 
linear equations in partial derivatives. We pass, as in /l-6/, from V to the new variable 
n using the equality V = (1 - q)V,, where If,,, is the maximum flow velocity. The variable 
9 defines the relative difference between V and its maximum value which decreases in Qi 

from n = Ai on Xi to zero as M+oo,with Ai > Ai+l , i = 0, 1, . . . . For a perfect gas 
we have in the considered flows M = (1 - n) x [(x - l)q(2 - q)/21-‘/1 , hence for M >> (x - 1)-'/z 

1 

q= (n-l)Ma 
I- y +...I 

4 (x - 1) M” 
(1.4) 

2. Owing to the parabolic degeneration occurring for 0< 11 < Ai 6 A,, , the flow in Qi 
is fully determined when a segment of the isobar Xi on which n = Ai 6 A0 and 0<6<6,i 
where ft,j is the value of 6 at the upper point of Zi. From this and that for V=GO the 
equations do not contain only r but, also, y, the expediency of changing the roles of the 
independent and dependent variables, i.e. passing to the hodograph plane rift, becomes evid- 
ent. The problem then reduces (see, e.g., /7/) to the determination of the Legendre potential 
0 in terms of its derivatives with respect to the hodograph variables expressed in terms of 
zand y. For a perfect gas the equation for (I) = Q(n, fi) and formulas for x and y , 

with v = 0 and T) and 13 taken as the independent variables, assumes the form 

'1x (rl? x) %l - Q,, + (1 - 11) Ql =0 
(2.1) 

z = -OD, cos 6 - (Do sin @)/(I - q), y = --(&sin 8 + (Qficos f+)/(l - q) 

XC% xl= 
(x - 1) (2 - q) (1 - rlY 

2 (1 - w + (X - 1) Pl - 2) tl 
=(1-x)[1+(x-~)n+o(11.)] 

where subscripts 11 and 6 denote the respective partial derivatives of @(1),6). The first 
equation of system (2.1) and its simplified form in the case of small n , and, which, owing 
to the coefficient at @,, approaching zero, confirms the indicated above parabolic degenera- 
tion, was apparently first used for explaining it in /l/. We shall show that (2.1) enables 
us to obtain more complete information about the solution in a,. 

Let us complement (2.1) by boundary conditions. These are based on that for n = hi and 
0 < 6 < 19,~i we have x(n,e) = Xi (6) and y (n,6) = Yi(6) , and on the known functions xi (a) 
and Yi(6) obtained from the calculation of the near field, and, also, that y(n, 0) = 0 for 

O<q<A,. We omit in what follows, as a rule, the subscript tia and, taking into account 
(2.1) rewrite these conditions in the form 

Q, (A, 6) = fI (6), @* (A, 6) = fa (6) for 0 6 6 -< *,,, (2.2) 

@e(q, 0) = 0 for O<q Q 4 

where f,(e) are expressed in terms of X (@) and Y(6) in conformity with the second and third 
of equalities (2.1), with f,(O) = 0. 

Solution of the first of Eqs. (2.1) with boundary conditions (2.2) may be sought by the 
method of separation of variables in the form 

The absence in this problem of any conditions at the upper boundary of 8 makes it pos- 
sible to choose for I&,,, any complete system of functions each of which satisfies an ordin- 
ary second order differential equation obtained by the substitution of (2.3) into (2.1), 
and the third of conditions (2.2). One of such systems is the sequence l,cosIt,cos26,... . 
Second order ordinary differential equations are also obtained for function &,,(n) whose co- 
efficients are variable, unlike the constant coefficients of %n(fl). The point n=O is 
for these functions a regular singular point in whose neighborhood the solution can be general- 
ly represented as the sum of two generalized power series /8/. Exponents Y,,~ of these series 
are, apart the dependence on m, y1 ~0 and yz =y =(x - 2)/(x -I)= 1 --h , where y is ex- 
pressed in terms of h=(x-I)-' for simplifying subsequent formulas. The above reasoning 
implies that for y#O, i.e. for x#2, as well as for y not any integer (for %>I, 
x = 1 + n-l , with n= 2, 3, . . correspond to these), the solution is of the form 

@ (% 6) = X1(% 6) + Vx2 (rl, 6) (2.4) 
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Here and subsequently, unless otherwise stated, Xj (rl, +) are assumed to be analytic functions 
of I]. Below, these functions will be usually written without the arguments ~1 and 6. Func- 
tions x1, and 2% are analytic also with respect to 6, which is actually immaterial in this 
case, since for their determination using conditions (2.2) it is not necessary to expand xi 
in ti. On the strength of the last of conditions (2.2) we have xla (rl, 0) = x20 (11, 0) = 0. The 
case of x = 1 + n-1 with n=l,Z,... will be briefly considered later. 

In conformity with (2.1) and (2.4) we have 

$m = -yX2 COS 6 + W3 t llLx4, +y = -yX2 sin 8 + qxs -j- y&x6 (2.5) 

where xs+ xa is expressed in terms of derivatives of x1 and KZ with respect to n and 6, 
and xs f% 0) = X6(% 0) = 0. We eliminate from these equations yx2 and obtain the equality 

!, = stg6 + q-'x? + x8 (2.6) 

in which ~7 and XS, as well as xb and ~0 vanish when 6~0. The last formula enables us 
to determine Ltf$f$ along a streamline and, to estimate the variation of 6 along it from Z 
to z-+00. For this we determine the total derivatives of both parts of (2.6) with respect 
to q, taking into account that along the streamline &./LIZ = tg@, eliminate z from the 
obtained equality using (2.51, we define the sought derivative by the resulting equation, and 
obtain 

& / 811 :- (z, T '1%) / (X1, -!- rl?,?) (2.7) 

Hence 6 Z= 6, -:- CL,, + o (9) , where 6, is the value approached by 6 along the streamline 
.3S z* 00 , a is a constant, and the total variation of 6 is of order Q(A), which agrees 
with the similar conclusions in /l-66/, but by no means implies the rectilinearity of stream- 
lines asserted there-This follows fromthatin~eintegration, on fairly large interval Z, of the 

streamlines equations dy/~x=tg8=tg1",+B11"-o(ri)inwhich @-cUcos'6,is asmall component,the contribu- 
tionoftheterm fillcanbeofany magnitude. That this is so for p< 0 or x< 3 follows from 
(2.6), since in conformity with (2.6) and (2.5) 

y = x tg 6, -i- (2 -t X,3)*-% -t Xl5 (2.8) 

and x1( (~1. 0) = xl5 (q. 0) = 0. Thus, when x < 2 , the streamlines for x-+ 3c noncoincident with 
the x-axis diverge to any extent from straight lines y = f tgQ, + const. The assertion of 
streamline rectilinearity is basic to the solution derived in /l-6/. The disregard of this 
property is the reason of the difference between that solution and the one obtained here. We 
shall prove this for M 9 (x - I)-‘/: , when in conformity with (1.4) n -il1-" and, moreover 
$ = $0-') Y pv. Taking these factors into consideration, we retain in X2 +- X0 from (2.5) 
only the zero terms of expansion in n. After some obvious transformations, equalities (2.5) 
assume the form 

pVx = A (6) cos6 + II’/(~-~) C (8) + I$? (8) + o (q, I$‘(~-‘)) = 

A (6) cos 8 -+ pvx @) + (pvy-w (7%) + 0 (&P, iv-* ‘(V-‘)) 
(2.9) 

where, owing to symmetry with respect to 6 functions -4 (6), B (a), C (6), X (6), and B” (8) are 
even, and the remaining odd. 

The equations of streamlines are obtained from this with the same accuracy when 6 is 
replaced by fi_ or 13, which is the value of 8 at the point of issue of a streamline defined 
by curve Pi. The first pairs of terms at the right-hand sides of (2.9) yield the solution 
obtained in /l-66/. But the second terms there dominate the next following ones only for xX2, 
while for x(2 the third terms which are absent in /l--6/ predominate (the case of x ;‘, 5 3 
is of interest in some not purely gasdynamic applications , e.g., in the theory of shallowwaters 
that correspond to x=2). We stress that according to the analysis presented below, the neglect 
of the second and third terms in (2.9) is usually admissible (but not in equations of stream- 
lines) only at Mach numbers exceeding several tens. Finally, we would point out that accord- 
ing to a reasoning similar to that used for ordinary differential equations (see /8/), the 
formulas for x -2 differ from the obtained above by the substitution in the left-hand sides 
of (2.5) of q and in the right-hand sides of (2.5) and (2.7) of 11ln11 , respectively, for +; 
the substitution of Ins for the power of complex 2 --x in (2.8); aiso the substitution of 
lnq in (2.6) for 11-'<and, finally, the substitution of 4 In q, dl-" III ill and pV lr~(pV) in (2,9), 

respectively for ?)"(X-l'. .lIm2/‘i-i’ and I$, L')"_' . Moreover,when x 2, xl4 and x13 are finite 
but not analytic functions of II in the vicinity of point \j 0 . Far x -= 1 -I- tz--I with iI >2 
similar substitutions are effected in higher and higher terms, and this makes these formulas 
valid as regards their principal terms. 

The accuracy of the distant field determination by the above formulas can be achieved, 
as already indicated, in two ways. The first of these consists of extending the near field 
with the expansion of (2.5) in 11 limited to a fixed number k of terms, for instance, two or 
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three (any numerically calculated part of the flow is called here the near field). Although 
this way seems to be the most natural, formulas (2.5) make it possible to attain the required 
accuracy also in the case of fixed dimensions of the near field by increasing k. In both 
cases the 2k coefficients dependent on + can be obtained by isolating in the near field Is 
isolines n= Ai\i A,,, i.e. by constructing 2k functions Xi (S) and Yi (8), i = 1, . . ., k. By defin- 
ing along these lines the respective intervals of expansions (2.5) we obtain 2k linear alge- 
braic equations for the determination of the equal number of unknown coefficients dependent on 
6. 

Actually, when carrying out the above procedure, it is by no means necessary to use iso- 
bars that have open regions of determination, i.e. those to the right of I,. The isobars 
to the left of 2, may prove suitable for this purpose , provided they belong to the same an- 
alytically homogeneous flow region as those on the right of it. In many instances the requir- 
ed smoothness is retained, if not up to subsonic, then to fairly moderate supersonic velocit- 
ies (e.g., for r G const and plane transition surface to .1{ = 1). The above makes at least not 
only possible to try to use moderately supersonic isobars but, also, to count on the validity 
of obtained formulas to the left of x0, although possibly not down to M = 1. 

3. The Legendre transform naturally yields the previous formulas for x and y from (2.1) 
also in the axisymmetric case. However the equation for @(n,+j) is in this case not so simple. 
This is due to that now the continuity equation 

has a free term containing y which inhibits linearization in variables of the hodograph. This 
difficulty can, however, be avoided, at least in the proximity of the axis of symmetry where 
pvIyNd(pV)/ay. Note that the region in which such substitution is valid, although re- 

maining narrow, as also sz 0, in the sence of the ratio of dimensions relative to y and 3: 
can widen arbitrarily as z-+30. For v=l the first of Eqs. (2.1) is replaced in that 
region by 

24x (rl, x) Qml- Qfie + (1 -- 11) @, - x0 (n,x) sin 26 [(1 -n) @98 t @'aI = 0 (3.1) 

x0 (q,x) = 12 + xq (q - Z)l/ [Z (1 - $2 + (x- 1) q(11 - 2)l 

where function ~{~,~) is the same as in (2.1). We seek a solution of (3.11, as in the case 
of (2.1) in the form of the sum of two solutions of the form ~Yi~i(~,6) with beforehandunknown 
exponents yi and functions of xi analytic in the neighborhood of point 7) =6 = 0. Since 
the expansion in sin6 begins with the first power of 6 the equation for yi which is ob- 
tained by equating to zero in each solution the coefficients at the lowest power of +Q and 6, 
i.e. at qyt-'60~ nV'-l yields y1 = 0 and ya = y = 1 -h with h = I/ [z (X - I)]. Thus for h# 1, 
--1, -2, . . ‘1 which corresponds to xf 1 f I/(&t) the solution of (3.1) is of the form (2.4). 
When x = 3,'2 the multiplier qy in the second term in (2.4) must be replaced by nln 11. All 
of the above remains valid when any function of 7, and 6 analytic in the neighborhood of 
point 11 =6 = 0 is substituted in (3.1) for x0 sin 26. The latter can be readily proved by 
taking into account that by virtue of the third of Eqs. (2.1) xi,,* = Xi0 = 0 when 6 = 0. 
This remark opens way for proving the validity of the reasoning in Sect.3 everyhwhere in Qi 
and not only near the x-axis. Hence by rewriting the above formulas in the form pVR2 = 
Aoi (1 i_ W), where A* and 6 are constants, and N is the distance from the coordinate 
origin, valid in the vicinity of 11 : 0, we obtain with an accuracy to 9' for PO/ y 

f-J?’ 1 a (p”) 
7 = I- (3 -6)sinp 67 

The alterations that must be introduced in this case in (3.1) do not affect y1 and yz, 
and their effect on functions xi(q,6) is immaterial for the subsequent analysis. The valid- 
ity of solution (2.4) with the obtained above values of y and functions x1 and xa analytic 
in the neighborhood of point ?j =@ = 0 not only in the small vicinity of the x-axis is sup- 
ported by the results of calculations presented in Sect.4 and, also, by that the indicated 
solution formally satisfies the complete nonlinear equation for @ (rlP@). 

Omitting the detailed analysis, which is analogous to that carried out for v=O, we 
present the final relations. Formulas (2.5)-(2.7) apply to the axisymmetric case without any 
change, except that now h is equal I/ 12 (x - 1)l and not its double value, as in the case 
of 2, = 0. Taking into account the distinction in hand y=l---h , the analog of Eq. (2.8) 
assumes the form 

r/ = x tg6, + (z + x13)3-2zxll + X1$ 
and formulas (2.9) becomes 

~~r'a:A(fj)cos6+ ql:l~l'+I11C(@)+ Iln(a)lo(9,ql,IZ(X--l)l)= (3.2) 
A (6) cos 6 + I/pX (6) + (pV)“-‘11’ (6) + o (:)I-‘, I~-“‘(~-‘)~) 

I/pTiy = A (6) sin 6 + ~lliIz(~+)l/r (6) f IID (ti) + 
0 (11, ql/l*+-l)l)= A(6) sin6 -+ i/gu @) -i (ply-W”(6) + 0 (M-2, MI-‘/ r(K--l)J) 
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For x = 9/n the power terms in respective formulas are replaced by nln n,ln q,In 2, i+iw2 
InM, and pVln(pt3 in conformity with the rules analogous to those used in Sect-Z. 

According to the derived relationships, streamlines may be arbitrarily close to straight 
lines, and formulas (3.2) for each of them, i.e. for fixed 6, in principal orders reduce to 
a flow from a spherical source of intensity A (6) with its pole at point z= X(ti)),y= Y(6) only 
when x>~/,. Otherwise contrary to /l-6/ streamlines arbitrarily strongly deviate from the 
straight lines as y = ztg+,$ coast when +-DO, and the terms proportional to B(6) and I) (6) 
or to B'(e) and D"(6)become the principal termsin(3.2 )incomparisonwiththosethatdefine the 
poletransfer. Itoughttobe stressed,however,thatforthemajorityofpracticallyinteresting xthe 
difference between x-1 and l/2 is not as great as from unity, Hence for v= 1 the relative 
dominant part of the second or third terms (respectively for x > "1% and Y.<~!~) is not so 
pronounced as in the plane case. In such situations it is expedient to retain in formulas 
(3.2) all three first terms. 

4. To ascertain the accuracy of the established here laws of free expansion flows, ex- 
tensive calculations of plane and axisymmetric streams were carried out. Some of these were 
already used for the construction of Fig.2. A special program based on the so-called "direct" 
scheme of the method of characteristics and which is a modification of the program composed 
earlier /9/ was used for computations. The above modification ensured a very rapid and exact 
computation of super- and hypersonic streams. Thus the determination of the acceleration 
section of a plane stream from M, = 1.002 with x = 1.25 to M =30 or to z = 2.7~10’ with 
over-all errors of the flow rate and momentum not exceeding 1% required 18 min.of computer 
time. 

Since further calculations relate to the r-axis, we present the formulas which are 
obtained for 6 = 0 after some transformations and rejection of higher order terms in the 
right-hand sides of the first equalities in (2.9) and (3.2). For Y =0 according to (2.9) 
we have on the r-axis 

(4.1) 

Here and subsequently Al B and c are functions of Y,X, M, , and f. In the case of axisym- 
metric flow the respective relations are of the form 

(4;2) 

The results of numerical computations for plane streams are shown in Fig.3 by solid lines, 
with the numerals l-5 denoting curves related to MO== 1.002, I-=O and correspondingly to X= 
1.25, *!%,?I$$ ":s, and 2. Curves l"-50 relate to r=5 and the same M, and X. Besides the 

solid lines two approximating curves are plotted for each case, viz. dash and dash-dot lines 
which correspond, respectively to computations using two or all three terms in the right-hand 
side of (4.1). When x= 1.25 the dash-dot and the solid lines merge in Fig.3. The coeffic- 
ients A,B and C were determined using the condition of congruence with dash lines at points 
M = M,,, and 10, and M == Mm, 10 and 6 with the dash and dash-dot lines, respectively (M,,, is 
the maximum value of M calculated for a particular case). The curves denoted by numerals 6 
and 7 relate to discharge with x= 1.4 and r==O of plane streams at M.= 3 and 4. Here, Z. 
was measured from the outlet cross section but was normalized, as everywhere in this paper, 
with respect to the half-height of the nozzle minimum cross section (the stream at that cross 
section was assumed uniform and M s 1). The results of similar computations and their com- 
parison with (4.2) in the case of axisymmetric flows are plotted in Fig.4 in basically the same 
layout as in Fig.3. The difference between these two figures is primarily in that curves 6 
and 6O In Fig.4 relate to M,,= 1.002 and x=3. Moreover, Fig.4 does not contain all dash- 
dot lines but only those most distinct from the solid lines, The validity of laws established 
in Sects. 2 and 3 is demonstrated in Figs.3 and 4, which also show then,as a rule, extremely 
slow transition to asymptotic formulas as M-oo, which are obtained when only the first 
terms are retained in the right-hand sides of respective formulas. 

We note in conclusion that strictly speaking the analysis in Sect.3 is valid only in 
narrow open zones which appear at very high M, and in whichthesimplificationofthe continu- 
ity equation used in Sect.3 is justified. In spite of this, even with allowance for the re- 
mark at the end of Sect.3, the efficiency of formulas (4.2) demonstrated in Fig.4 makes it pas- 
sible to expect that the laws established in Sect.3 are valid not only in such zones, but also 
in a considerable part of the free expansion region. 

The authors thank N. I. Tilliaeva whose program was used by them as the prototype, and 
A. M. Konkina for her assistance. 
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